Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.077
Filtrar
1.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563123

RESUMO

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Assuntos
Arginina , Canal de Potássio ERG1 , Simulação de Dinâmica Molecular , Venenos de Escorpião , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Humanos , Arginina/química , Arginina/metabolismo , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/química , Simulação de Acoplamento Molecular , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/metabolismo , Células HEK293 , Animais , Mutação
2.
Praxis (Bern 1994) ; 113(2): 50-54, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-38536194

RESUMO

INTRODUCTION: Long QT syndrome (LQTS) is a congenital ion channel disorder causing prolonged ventricular repolarization and presents on surface ECG with a prolonged QTc interval. This condition predisposes to ventricular arrhythmias and also sudden cardiac death. LQTS without appropriate therapy during pregnancy and the postnatal phase poses an additionally increased risk of sudden cardiac death due to physiological changes associated with gestation. We present a case report of a 30-year-old pregnant woman with known long QT syndrome Type 2 (LQT2) and discuss the management in cardiological practice.


Assuntos
Síndrome do QT Longo , Pacientes , Feminino , Gravidez , Humanos , Adulto , Morte Súbita Cardíaca , Canal de Potássio ERG1
3.
BMC Biol ; 22(1): 29, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317233

RESUMO

BACKGROUND: Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown. RESULTS: We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. CONCLUSIONS: Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.


Assuntos
Canal de Potássio ERG1 , Ativação do Canal Iônico , Humanos , Sequência de Aminoácidos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/genética , Mutação , Nucleotídeos Cíclicos , Canal de Potássio ERG1/genética
4.
HGG Adv ; 5(2): 100270, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38219013

RESUMO

Long QT syndrome (LQTS), caused by the dysfunction of cardiac ion channels, increases the risk of sudden death in otherwise healthy young people. For many variants in LQTS genes, there is insufficient evidence to make a definitive genetic diagnosis. We have established a robust functional patch-clamp assay to facilitate classification of missense variants in KCNH2, one of the key LQTS genes. A curated set of 30 benign and 30 pathogenic missense variants were used to establish the range of normal and abnormal function. The extent to which variants reduced protein function was quantified using Z scores, the number of standard deviations from the mean of the normalized current density of the set of benign variant controls. A Z score of -2 defined the threshold for abnormal loss of function, which corresponds to 55% wild-type function. More extreme Z scores were observed for variants with a greater loss-of-function effect. We propose that the Z score for each variant can be used to inform the application and weighting of abnormal and normal functional evidence criteria (PS3 and BS3) within the American College of Medical Genetics and Genomics variant classification framework. The validity of this approach was demonstrated using a series of 18 KCNH2 missense variants detected in a childhood onset LQTS cohort, where the level of function assessed using our assay correlated to the Schwartz score (a scoring system used to quantify the probability of a clinical diagnosis of LQTS) and the length of the corrected QT (QTc) interval.


Assuntos
Síndrome do QT Longo , Mutação de Sentido Incorreto , Criança , Humanos , Morte Súbita , Canal de Potássio ERG1/genética , Coração , Síndrome do QT Longo/diagnóstico
5.
Biomed Pharmacother ; 171: 116138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237352

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease characterized by severe pulmonary fibrosis, for which there is an urgent need for effective therapeutic agents. Mefloquine (Mef) is a quinoline compound primarily used for the treatment of malaria. However, high doses (>25 mg/kg) may lead to side effects such as cardiotoxicity and psychiatric disorders. Here, we found that low-dose Mef (5 mg/kg) can safely and effectively treat IPF mice. Functionally, Mef can improve the pulmonary function of IPF mice (PIF, PEF, EF50, VT, MV, PENH), alleviating pulmonary inflammation and fibrosis by inhibiting macrophage activity. Mechanically, Mef probably regulates the Jak2/Stat3 signaling pathway by binding to the 492HIS site of Potassium voltage-gated channel subfamily H member 2 (KCNH2) protein in macrophages, inhibiting the secretion of macrophage inflammatory and fibrotic factors. In summary, Mef may inhibit macrophage activity by binding to KCNH2 protein, thereby slowing down the progress of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mefloquina , Humanos , Camundongos , Animais , Mefloquina/uso terapêutico , Macrófagos/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Fibrose , Transdução de Sinais , Bleomicina/farmacologia , Canal de Potássio ERG1/metabolismo
6.
PLoS One ; 19(1): e0287206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181028

RESUMO

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the outer loop of the channel and substitution at position 428 from serine to proline (S428P), respectively. Heterologous expression of P632L and S428P into HEK cells produced no hERG current compared to the wild type (WT). Moreover, the co-transfection of WT and P632L yielded no hERG current; however, the co-transfection of WT and S428P yielded partial hERG current. Action potentials were prolonged in a complete or partial blockade of hERG current from computer simulations which was more severe in Purkinje than ventricular myocytes. Three dimensional simulations revealed a higher susceptibility to reentry in the presence of hERG current blockade. Our experimental findings suggest that both P632L and S428P mutations may impair the KCNH2 gene. The Purkinje cells exhibit a more severe phenotype than ventricular myocytes, and the hERG current blockade renders the ventricles an arrhythmogenic substrate from computer modeling.


Assuntos
Canal de Potássio ERG1 , Síndrome do QT Longo , Adolescente , Feminino , Humanos , Lactente , Potenciais de Ação , Simulação por Computador , Células Epiteliais , Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Mutação
7.
Sci Rep ; 14(1): 2586, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297132

RESUMO

Disease modeling using human induced pluripotent stem cells (hiPSCs) from patients with genetic disease is a powerful approach for dissecting pathophysiology and drug discovery. Nevertheless, isogenic controls are required to precisely compare phenotypic outcomes from presumed causative mutations rather than differences in genetic backgrounds. Moreover, 2D cellular models often fail to exhibit authentic disease phenotypes resulting in poor validation in vitro. Here we show that a combination of precision gene editing and bioengineered 3D tissue models can establish advanced isogenic hiPSC-derived cardiac disease models, overcoming these drawbacks. To model inherited cardiac arrhythmias we selected representative N588D and N588K missense mutations affecting the same codon in the hERG potassium channel gene KCNH2, which are reported to cause long (LQTS) and short (SQTS) QT syndromes, respectively. We generated compound heterozygous variants in normal hiPSCs, and differentiated cardiomyocytes (CMs) and mesenchymal cells (MCs) to form 3D cardiac tissue sheets (CTSs). In hiPSC-derived CM monolayers and 3D CTSs, electrophysiological analysis with multielectrode arrays showed prolonged and shortened repolarization, respectively, compared to the isogenic controls. When pharmacologically inhibiting the hERG channels, mutant 3D CTSs were differentially susceptible to arrhythmic events than the isogenic controls. Thus, this strategy offers advanced disease models that can reproduce clinically relevant phenotypes and provide solid validation of gene mutations in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/genética , Canal de Potássio ERG1/genética , Arritmias Cardíacas/genética , Mutação , Miócitos Cardíacos/fisiologia , Fenótipo , Potenciais de Ação/genética
8.
Gene ; 899: 148132, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38181928

RESUMO

BACKGROUND: Cardiac arrhythmia, a common cardiovascular disease, is closely related to genetic polymorphisms. However, the associations between polymorphisms in KCNH2 and various arrhythmias remain inadequately explored. METHODS: Guided by the assumption that KCNH2 genetic polymorphisms significantly contribute to the development of arrhythmias, we thoroughly explored the associations between 85 KCNH2 genetic variations and 16 cardiac arrhythmias in a sample obtained from the UK Biobank (UKBB, N = 307,473). The illnesses documented in the electronic medical records of the sample were mapped to a phecode system for a more accurate representation of distinct phenotypes. Survival analysis was used to test the effect of KCNH2 variants on arrhythmia incidence, and a phenotype-wide association study (PheWAS) was performed to investigate the effect of KCNH2 polymorphisms on 102 traits, including physical measurements, biomarkers, and hematological indicators. RESULTS: Novel associations of variants rs2269001 and rs7789585 in KCNH2 with paroxysmal tachycardia (PT) and atrial fibrillation/flutter (AF/AFL), respectively, were identified. Moreover, with an increase in the number of minor alleles of these two variants, the incidence rates of PT and AF/AFL decreased. In addition, the PheWAS results suggested that these two single nucleotide polymorphisms were associated with multiple parameters in physical measurements and neutrophil percentage. CONCLUSION: The multiple novel associations observed in this study illustrate the importance of KCNH2 genetic variations in the pathogenesis of arrhythmia.


Assuntos
Fibrilação Atrial , Flutter Atrial , Humanos , Fibrilação Atrial/genética , Flutter Atrial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Alelos , Canal de Potássio ERG1/genética
9.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769355

RESUMO

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
10.
Pflugers Arch ; 476(1): 87-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934265

RESUMO

Zebrafish provide a translational model of human cardiac function. Their similar cardiac electrophysiology enables screening of human cardiac repolarization disorders, drug arrhythmogenicity, and novel antiarrhythmic therapeutics. However, while zebrafish cardiac repolarization is driven by delayed rectifier potassium channel current (IKr), the relative role of alternate channel transcripts is uncertain. While human ether-a-go-go-related-gene-1a (hERG1a) is the dominant transcript in humans, expression of the functionally distinct alternate transcript, hERG1b, modifies the electrophysiological and pharmacologic IKr phenotype. Studies of zebrafish IKr are frequently translated without consideration for the presence and impact of hERG1b in humans. Here, we performed phylogenetic analyses of all available KCNH genes from Actinopterygii (ray-finned fishes). Our findings confirmed zebrafish cardiac zkcnh6a as the paralog of human hERG1a (hKCNH2a), but also revealed evidence of a hERG1b (hKCNH2b)-like N-terminally truncated gene, zkcnh6b, in zebrafish. zkcnh6b is a teleost-specific variant that resulted from the 3R genome duplication. qRT-PCR showed dominant expression of zkcnh6a in zebrafish atrial and ventricular tissue, with low levels of zkcnh6b. Functional evaluation of zkcnh6b in a heterologous system showed no discernable function under the conditions tested, and no influence on zkcnh6a function during the zebrafish ventricular action potential. Our findings provide the first descriptions of the zkcnh6b gene, and show that, unlike in humans, zebrafish cardiac repolarization does not rely upon co-assembly of zERG1a/zERG1b. Given that hERG1b modifies IKr function and drug binding in humans, our findings highlight the need for consideration when translating hERG variant effects and toxicological screens in zebrafish, which lack a functional hERG1b-equivalent gene.


Assuntos
Canais de Potássio Éter-A-Go-Go , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Filogenia , Coração/fisiologia , Arritmias Cardíacas/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo
11.
J Affect Disord ; 347: 399-405, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000475

RESUMO

BACKGROUND: Escitalopram can cause prolongation of the QT interval on the electrocardiogram (ECG). However, only some patients get pathological QTc prolongation in clinic. We investigated the influence of KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors on escitalopram-induced QTc prolongation. METHODS: A total of 713 patients prescribed escitalopram were identified and had at least one ECG recording in this retrospective study. 472 patients with two or more ECG data were divided into QTc prolongation (n = 119) and non-prolongation (n = 353) groups depending on the threshold change in QTc of 30 ms above baseline value (∆QTc ≥ 30 ms). 45 patients in the QTc prolongation group and 90 patients in the QTc non-prolongation group were genotyped for 43 single nucleotide polymorphisms (SNPs) of KCNQ1, KCNE1, and KCNH2 genes. RESULTS: Patients with QTc prolongation (∆QTc ≥ 30 ms) got higher escitalopram dose (10.3 mg) than patients without QTc prolongation (9.4 mg), although no significant relationship was found between QTc interval and escitalopram dose in the linear mixed model. Patients who were older/coronary disease/hypertension or carried with KCNE1 rs1805127 C allele, KCNE1 rs4817668 C allele, KCNH2 rs3807372 AG/GG genotype were significantly at risk for QTc prolongation (∆QTc ≥ 30 ms). Concomitant antipsychotic treatment was associated with a longer QTc interval. LIMITATIONS: A relatively small sample size and lack of the blood concentration of escitalopram restricted the accurate relationship between escitalopram dose and QTc interval. CONCLUSION: Our study revealed that KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors provide a complementary effect in escitalopram-induced QTc prolongation.


Assuntos
Síndrome do QT Longo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Escitalopram , Estudos Retrospectivos , Canal de Potássio KCNQ1/genética , Eletrocardiografia , Polimorfismo de Nucleotídeo Único , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos adversos , Canal de Potássio ERG1/genética
12.
Gene ; 897: 148076, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086455

RESUMO

BACKGROUND: Among KCNH2 missense loss of function (LOF) variants, homozygosity -at any position in the Kv11.1/hERG channel - is very rare and generally leads to intrauterine death, while heterozygous variants in the pore are responsible for severe Type 2 long-QT syndrome (LQTS). We report a novel homozygous p.Gly603Ser missense variant in the pore of Kv11.1/hERG (KCNH2 c.1807G > A) discovered in the context of a severe LQTS. METHODS: We carried out a phenotypic family study combined with a functional analysis of mutated and wild-type (WT) Kv11.1 by two-electrode voltage-clamp using the Xenopus laevis oocyte heterologous expression system. RESULTS: The variant resulted in a severe LQTS phenotype (very prolonged corrected QT interval, T-wave alternans, multiple Torsades de pointes) with a delayed clinical expression in later childhood in the homozygous state, and in a Type 2 LQTS phenotype in the heterozygous state. Expression of KCNH2 p.Gly603Ser cRNA alone elicited detectable current in Xenopus oocytes. Inactivation kinetics and voltage dependence of activation were not significantly affected by the variant. The macroscopic slope conductance of the variant was three-fold less compared to the WT (18.5 ± 9.01 vs 54.7 ± 17.2 µS, p < 0.001). CONCLUSIONS: We characterized the novel p.Gly603Ser KCNH2 missense LOF variant in the pore region of Kv11.1/hERG leading to a severe but viable LQTS in the homozygous state and an attenuated Type 2 LQTS in heterozygous carriers. To our knowledge we provide the first description of a homozygous variant in the pore-forming region of Kv11.1 with a functional impact but a delayed clinical expression.


Assuntos
Canal de Potássio ERG1 , Síndrome do QT Longo , Criança , Humanos , Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Fenótipo , Linhagem
13.
Int J Mol Med ; 53(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063256

RESUMO

The Kv11.1 potassium channel encoded by the Kcnh2 gene is crucial in conducting the rapid delayed rectifier K+ current in cardiomyocytes. Homozygous mutation in Kcnh2 is embryonically lethal in humans and mice. However, the molecular signaling pathway of intrauterine fetal loss is unclear. The present study generated a Kcnh2 knockout rat based on edited rat embryonic stem cells (rESCs). Kcnh2 knockout was embryonic lethal on day 11.5 of development due to a heart configuration defect. Experiments with human embryonic heart single cells (6.5­7 weeks post­conception) suggested that potassium voltage­gated channel subfamily H member 2 (KCNH2) plays a crucial role in the development of compact cardiomyocytes. By contrast, apoptosis was found to be triggered in the homozygous embryos, which could be attributed to the failure of KCNH2 to form a complex with integrin ß1 that was essential for preventing the process of apoptosis via inhibition of forkhead box O3A. Destruction of the KCNH2/integrin ß1 complex reduced the phosphorylation level of AKT and deactivated the glycogen synthase kinase 3 ß (GSK­3ß)/ß­catenin pathway, which caused early developmental abnormalities in rats. The present work reveals a basic mechanism by which KCNH2 maintains intact embryonic heart development.


Assuntos
Canal de Potássio ERG1 , Cardiopatias Congênitas , Animais , Feminino , Humanos , Camundongos , Gravidez , Ratos , Desenvolvimento Embrionário , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiopatias Congênitas/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Miócitos Cardíacos/metabolismo
14.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003453

RESUMO

Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias.


Assuntos
Canais de Potássio Éter-A-Go-Go , Bloqueadores dos Canais de Potássio , Humanos , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Miócitos Cardíacos , Potenciais de Ação
15.
Clinics (Sao Paulo) ; 78: 100285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37783170

RESUMO

INTRODUCTION: Long QT Syndrome (LQTS) is an inherited disease with an abnormal electrical conduction system in the heart that can cause sudden death as a result of QT prolongation. LQT2 is the second most common subtype of LQTS caused by loss of function mutations in the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene. Although more than 900 mutations are associated with the LQTS, many of these mutations are not validated or characterized. METHODS AND RESULTS: Sequencing analyses of genomic DNA of a family with LQT2 identified a putative mutation. i.e., KCNH2(NM_000238.3): c.3099_3112del, in KCNH2 gene which appeared to be a definite pathogenic mutation. The family pedigree information showed a gender difference in clinical features and T-wave morphology between male and female patients. The female with mutation exhibited recurring ventricular arrhythmia and syncope, while two male carriers did not show any symptoms. In addition, T-wave in females was much flatter than in males. The female proband showed a positive reaction to the lidocaine test. Lidocaine injection almost completely blocked ventricular arrhythmia and shortened the QT interval by ≥30 ms. Treatment with propranolol, mexiletine, and implantation of cardioverter-defibrillators prevented the sustained ventricular tachycardia, ventricular fibrillation, and syncope, as assessed by a 3-year follow-up evaluation. CONCLUSIONS: A putative mutation c.3099_3112del in the KCNH2 gene causes LQT2 syndrome, and the pathogenic mutation mainly causes symptoms in female progeny.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Masculino , Feminino , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Fatores Sexuais , Mutação/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Síncope , Lidocaína
16.
Proc Natl Acad Sci U S A ; 120(42): e2305295120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816059

RESUMO

Coordinated expression of ion channels is crucial for cardiac rhythms, neural signaling, and cell cycle progression. Perturbation of this balance results in many disorders including cardiac arrhythmias. Prior work revealed association of mRNAs encoding cardiac NaV1.5 (SCN5A) and hERG1 (KCNH2), but the functional significance of this association was not established. Here, we provide a more comprehensive picture of KCNH2, SCN5A, CACNA1C, and KCNQ1 transcripts collectively copurifying with nascent hERG1, NaV1.5, CaV1.2, or KCNQ1 channel proteins. Single-molecule fluorescence in situ hybridization (smFISH) combined with immunofluorescence reveals that the channel proteins are synthesized predominantly as heterotypic pairs from discrete molecules of mRNA, not as larger cotranslational complexes. Puromycin disrupted colocalization of mRNA with its encoded protein, as expected, but remarkably also pairwise mRNA association, suggesting that transcript association relies on intact translational machinery or the presence of the nascent protein. Targeted depletion of KCHN2 by specific shRNA resulted in concomitant reduction of all associated mRNAs, with a corresponding reduction in the encoded channel currents. This co-knockdown effect, originally described for KCNH2 and SCN5A, thus appears to be a general phenomenon among transcripts encoding functionally related proteins. In multielectrode array recordings, proarrhythmic behavior arose when IKr was reduced by the selective blocker dofetilide at IC50 concentrations, but not when equivalent reductions were mediated by shRNA, suggesting that co-knockdown mitigates proarrhythmic behavior expected from the selective reduction of a single channel species. We propose that coordinated, cotranslational association of functionally related ion channel mRNAs confers electrical stability by co-regulating complementary ion channels in macromolecular complexes.


Assuntos
Arritmias Cardíacas , Canal de Potássio KCNQ1 , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio ERG1/genética , Hibridização in Situ Fluorescente , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
17.
Stem Cell Res ; 72: 103192, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660555

RESUMO

Type 2 Long QT Syndrome (LQT2) is a rare genetic heart rhythm disorder causing life-threatening arrhythmias. We derived induced pluripotent stem cell (iPSC) lines from two patients with LQT2, aged 18 and 6, both carrying a heterozygous missense mutation on the 3rd and 11th exons of KCNH2. The iPSC lines exhibited normal genomes, expressed pluripotent markers, and differentiated into trilineage embryonic layers. These patient-specific iPSC lines provide a valuable model to study the molecular and functional impact of the hERG channel gene mutation in LQT2 and to develop personalized therapeutic approaches for this syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio ERG1/genética , Síndrome do QT Longo/metabolismo , Arritmias Cardíacas/metabolismo , Mutação
18.
Cardiovasc Res ; 119(15): 2522-2535, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37739930

RESUMO

AIMS: Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS: The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION: Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Miócitos Cardíacos , Potenciais de Ação , Éteres , Canal de Potássio ERG1/genética
19.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37628921

RESUMO

KCNH2 loss-of-function mutations cause long QT syndrome type 2 (LQT2), an inherited cardiac disorder associated with life-threatening ventricular arrhythmia. Through whole-exome sequencing, we discovered a novel AGCGACAC deletion (S981fs) in the hERG gene of an LQT2 patient. Using a heterologous expression system and patch clamping, we found that the mutant K channel had reduced cell surface expression and lower current amplitude compared to the wild type. However, functional expression was restored by lowering temperature and using potassium channel inhibitors or openers (E4031, cisapride, nicorandil). Co-immunoprecipitation experiments confirmed the assembly of mutant proteins with wild-type hERG. Confocal imaging showed decreased hERG distribution on the cell membrane in cells expressing S981fs. Notably, treatment with G418 significantly increased hERG current in wild-type/S981fs heterozygotes. In conclusion, our study identifies a novel hERG mutation leading to impaired Kv11.1 function due to trafficking and nonsense-mediated RNA decay defects. These findings shed light on the mechanisms underlying LQT2 and offer potential therapeutic avenues.


Assuntos
Síndrome do QT Longo , Humanos , Sequenciamento do Exoma , Síndrome do QT Longo/genética , Coração , Membrana Celular , Mutação , Canal de Potássio ERG1/genética
20.
Molecules ; 28(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446837

RESUMO

Erythromycin is one of the few compounds that remarkably increase ether-a-go-go-related gene (hERG) inhibition from room temperature (RT) to physiological temperature (PT). Understanding how erythromycin inhibits the hERG could help us to decide which compounds are needed for further studies. The whole-cell patch clamp technique was used to investigate the effects of erythromycin on hERG channels at different temperatures. While erythromycin caused a concentration-dependent inhibition of cardiac hERG channels, it also shifted the steady-state activation and steady-state inactivation of the channel to the left and significantly accelerated the onset of inactivation at both temperatures, although temperature itself caused a profound change in the dynamics of hERG channels. Our data also suggest that the binding pattern to S6 of the channels changes at PT. In contrast, cisapride, a well-known hERG blocker whose inhibition is not affected by temperature, does not change its critical binding sites after the temperature is raised to PT. Our data suggest that erythromycin is unique and that the shift in hERG inhibition may not apply to other compounds.


Assuntos
Eritromicina , Canais de Potássio Éter-A-Go-Go , Eritromicina/farmacologia , Temperatura , Cisaprida/metabolismo , Cisaprida/farmacologia , Coração , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...